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ABSTRACT 

 

 Artificial metalloenzymes are an important class of hybrid catalysts for 

enantioselective, regioselective and chemoselective organic transformations. Despite several 

limitations associated with this type of hybrid catalyst system and their limited development 

relative to small molecule catalysts, significant advances have been achieved over the past 

few decades. This thesis describes the background, applicability of such hybrid catalysts, 

anchoring strategies and methods involved in the improvement of catalytic activities of 

artificial metalloenzymes. The generation of a thermostable human carbonic anhydrase 

mutant, activity determination, generation of an artificial metalloenzyme (manganese-

substituted human carbonic anhydrase) and its use as a catalyst for enantioselective 

epoxidation of olefins is also described. 
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CHAPTER I 

 INTRODUCTION 

 

General introduction 

Enzymes are a class of macromolecules with three-dimensional structures composed 

of folded linear amino acid chains. Enzymes are one of the most important types of catalysts 

used for biological transformations in nature. Some enzymes require an additional non-

protein component called a cofactor in order to achieve proper activity. These cofactors can 

either be metal ions, metal clusters or organic components. The enzyme with its cofactor is 

called the haloenzyme and the enzyme without the cofactor is called the apo-enzyme. 

Enzymes that have metal cofactors, are called metalloenzymes and the metal cofactor is 

bound to the amino acid residues inside the active site of the enzyme. Nearly one third of 

structurally characterized proteins are metalloenzymes1 and many of these metalloenzymes 

are capable of catalyzing otherwise challenging reactions in biological systems.2, 3 

The synthesis of enantiopure compounds is challenging, but is becoming increasingly 

important in the pharmaceutical industry,4 in the food industry and in agricultural fields. 

Recently, the metalloenzymes and the design of artificial metalloenzymes has gained the 

attention of the synthetic chemistry community due to the ability of metalloenzymes to 

catalyze enantioselective, regioselective and chemoselective organic transformations. Thus, 

the use of metalloenzymes and the development of new artificial metalloenzymes with 

improved activities and selectivities have increased in recent years.5, 6, 7, 8, 9 Small-molecule, 

homogeneous catalysts typically use chiral ligands to achieve high levels of 

enantioselectivity, but by combining enzymatic catalysis with transition metal catalysis the 
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potential exists to eliminate the use of chiral, small-molecule ligands, which are expensive 

and/or difficult to make.10 The combination of transition metal catalysis and enzymatic 

catalysis leads to the generation of hybrid catalyst systems capable of selective organic 

transformations with high functional group tolerance and high turnover numbers. Also, the 

ability to fine-tune the ligand environment by modifying the secondary coordination sphere 

of the enzyme in these systems may lead to further improvements. 

The essential components for a hybrid catalyst system are a biomolecular host and a 

catalytically active metal moiety. In the case of metalloenzymes, the biomolecular host 

provides a chiral pocket for enantioselective transformations. The “lock-and-key” hypothesis 

explains that the selectivity of these transformations results from the shape and the size of the 

active site, and these parameters matter greatly when it comes to enzymatic catalysis.11 

Changing the active metal complex that is incorporated in the active site of the enzyme can 

increase the activity and broaden the scope of transformations that can be catalyzed by 

metalloenzymes. Akaburi, Sakurai, Izumi and Fujii reported the first use of biomolecular 

host and metal moiety incorporation (a protein-palladium complex prepared by adsorption of 

palladium chloride on silk fibroin fiber) for an asymmetric hydrogenation to synthesize 

optically active amines and amino acids.5 One of the earliest reports of artificial 

metalloenzyme catalysis is the oxidation of ascorbic acid by carboxypeptidase[Cu] by 

Yamamura and Kaiser.6 The use of artificial metalloenzyme catalysis for synthetic 

transformations has undergone dramatic development in the decades following these initial 

reports. 

The structure of an artificial metalloenzyme consists of a biomolecular host, an active 

catalytic metal moiety and an optional anchoring group or a spacer group. The classification 
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of an artificial metalloenzyme is based on these primary components. Biomolecular hosts can 

either be a metalloenzyme (carbonic anhydrase, bovine serum albumin, etc.), a protein 

(adipocyte lipid-binding protein) or a polynucleotide (DNA, RNA).12 The metal moiety can 

be a metal cation (Cu2+, Mn2+, Rh1+, etc.) that is directly bound to the active site of the 

enzyme or incorporated into the enzyme through a spacer group or a linker. The linker can 

consist of an organic or inorganic moiety (Cu-phthalocyanin,13 Rh-diphosphine,14 etc.). The 

precise location of the metal catalyst and the strategy used to connect the biomolecular host 

and the metal catalyst is important in terms of classifying metalloenzymes. The three major 

anchoring strategies used to attach the metal moiety to the artificial metalloenzyme are dative 

anchoring, supramolecular anchoring and covalent anchoring.12 

Dative anchoring is a common method used in artificial metalloenzyme generation in 

order to incorporate a metal cation to the biomolecular host. The metal cation found in the 

natural metalloenzyme is removed by introducing a chelating agent using dialysis. Then, a 

new metal cation is introduced into the same site of the apo-enzyme through dialysis, thereby 

generating the artificial metalloenzyme (Figure 1). The normal function of the 

metalloenzyme will be lost as a result of the metal cation exchange in the active site. 

However, novel catalytic activity can be introduced by this method. Yamamura and Kaiser 

reported the first example of using dative anchoring to generate carboxypeptidase[Cu].6 

Carboxypeptidase[Zn] shows peptidase and esterase activity but the replacement of Zn2+ with 

Cu2+ in the active site generates carboxypeptidase[Cu], which catalyzes the oxidation of 

ascorbic acid to dehydroascorbic acid.6 Recently the Kazlauskas group7 and the Soumillion 

group15 have reported on the same strategy to generate carbonic anhydrase[Mn]. Carbonic 

anhydrase[Zn] catalyzes the hydration of carbon dioxide and facilitates the removal of carbon 
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dioxide from mammalian bodies. However the artificial metalloenzyme generated by the 

replacement of Zn2+ with Mn2+ in the active site showed a novel catalytic activity by 

catalyzing the epoxidation of alkenes. The Kazlauskas group also used this same strategy to 

generate carbonic anhydrase[Rh] from carbonic anhydrase[Zn] for the catalytic 

hydrogenation of cis-stilbene.16  

 

 

 

 

 

 

Figure 1: Dative anchoring strategy for the generation of an artificial metalloenzyme  

 

Supramolecular anchoring is the second strategy used to anchor the catalytically 

active metal moiety to the biomolecular host. In this method the metal catalyst is anchored to 

the biomolecular host such as a protein,17, 18 DNA,8 or antibody14 through organic ligands 

and/or spacer groups.  C.C. Lin, C.W. Lin and S.C. Chan reported this anchoring strategy to 

generate an artificial metalloenzyme in which a rhodium(I)-biotin complex was bound to 

streptavidin and used as a catalyst for hydrogenation of itaconic acid with moderate 

enantioselectivity.17 Roelfes and Feringa have reported the use of this method to generate an 

artificial metalloenzyme (an artificial DNAzyme) using a DNA double helix as the 

biomolecular host and a Cu2+ metal ion (Figure 3).8 They use small aromatic molecules 
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(nitrogen containing heterocycles) to link the Cu2+ catalyst to the DNA double helix and the 

resulting complex catalyzes an asymmetric Diels-Alder reaction.  

 

 

 

 

 

 

Figure 2: Supramolecular anchoring strategy for the generation of an artificial  

                 metalloenzyme  [Rh(Ln)(biotin-ligand)-streptavidin.18 

 

 

 

 

 

 

Figure 3: Supromolecular anchoring strategy for the generation of DNAzyme8  
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metalloenzymes. This method involves a modification of the biomolecular host (which can 
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More recent examples on the use covalent anchoring are reported by de Vries by the 

modification of cysteine-25 in the active site of papain to complex [Rh(COD)2]BF4 (Figure 4, 

equation 1).21 A phosphorus ligand was directly attached to the nucleophilic thiol group of 

cysteine-25 and the rhodium complex was introduced to the active site of papain through this 

linker. This novel artificial metalloenzyme was used for the hydrogenation of methyl-2-

acetomidoacrylate.21, 22 Salmain has used the same strategy to generate an artificial 

metalloenzyme from papain for a catalytic Diels-Alder reaction (Figure 4, equation 2).23 In 

this report, the cystein-25 inside the active site was modified to include a nitrogen containing 

aromatic ligand which complexes the ruthenium(II) catalyst inside active site of the enzyme. 

Jaschke20 reported the use of DNA-diene-iridium(I) hybrid catalyst for allylic amination in an 

aqueous medium. This novel catalyst contains a oligodeoxynucleotide carrying a diene ligand 

(a bicyclo[2.2.2]octadiene) and an iridium[I] complex that is combined with a 

complementary DNA strand. 

 

 

 

 
 

 

 

 

Figure 4: Covalent anchoring of papain at cysteine-25 inside the active site: equation 1,21, 22  
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The novel activities obtained through the generation of artificial metalloenzymes have 

been exploited extensively towards the identification of hybrid catalyst systems for 

enantioselective, regioselective and chemoselective organic transformations. Promising 

developments have been made in reactions such as the hydrogenation of olefins (Figure 

5A),14, 16, 17, 21, 22 the oxidation of alcohols (Figure 5B),6, 24 sulfoxidation (Figure 5C),25 the 

epoxidation of olefins (Figure 5D),7, 15 the hydroformylation of olefins,9, 26, 27 and Diels-Alder 

reactions (Figure 5E).8, 20, 23, 28 
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D) 

 

 

 

E)  

 

 

 

 

 

Figure 5: Reactions catalyzed by artificial metalloenzymes; A) hydrogenation of olefins,16  

                B) oxidation of alcohols,6 C) enantioselective sulfoxidation,25 D) epoxidation  

                of olefin,7 E) enantioselective Diels-Alder reaction28  

 

Enzymes play a major role in the design of artificial metalloenzymes, but the numbers 
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enzymes carbonic anhydrase is most extensively used metalloenzyme to generate artificial 

metalloenzymes by the dative anchoring strategy. Carbonic anhydrase (CA) catalyzes the 
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hydration of carbon dioxide and the dehydration of bicarbonate. The natural metalloenzyme 

contains a Zn2+ in the active site, which is bound through the imidazole groups of three 

histidine residues (His-94, His-96 and His-114) and one hydroxide ion (or a water 

molecule).32, 33 Carbonic anhydrases are categorized into five classes: α-CA in animals (all 

mammalians), β-CA in plants and prokaryotes, γ-CA in bacteria, δ-CA in marine diatoms 

and ζ-CA in bacteria.32 Among these α-CA is the most widely studied class and it has 16 

known isoforms (CA-I, CA-II and so on). Carbonic anhydrase is a water-soluble, single-

chain, monomeric enzyme and the molecular weight is ~30 kDa (CA-II 29 kDa, CA-IV 35 

kDa).34 There are many reasons why carbonic anhydrase is an excellent candidate for the 

generation of artificial metalloenzymes: 1) it is relatively easy to express and purify as  

compared to other commonly used metalloenzymes, 2) it has a very good stability under 

standard laboratory conditions and as a result, it is easy to handle, 3) it is easy to prepare the 

apo-enzyme and Zn2+ can be replaced with other divalent cations without a loss of the 

enzyme stability, 4) the structure of the enzyme and the active site are well established and 

the amino acid sequences are known for most of the isoforms. 

This thesis details the generation of manganese-substituted human carbonic 

anhydrase (hCAII[Mn]) using a dative anchoring strategy and the use of this artificial 

metalloenzyme for the catalytic, enantioselective epoxidation of olefins. Furthermore, this 

thesis describes the development of a thermostable artificial metalloenzyme derived from the 

wild-type of human carbonic anhydrase.  
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Thesis Organization 

This thesis consists of four chapters. Chapter 1 is a general introduction to the 

background and work described in chapter 2 and chapter 3. The research described in chapter 

2 and 3 has not yet been submitted to any journal for publication. Chapter 4 is the conclusion 

on the thesis.  

Chapter 2 describes the background, methods involved in the generation of a 

thermostable variant of human carbonic anhydrase isoenzyme II from the wild-type, and the 

experiments carried out to confirm the thermostability. 

Chapter 3 describes the generation of manganese-substituted human carbonic 

anhydrase from wild-type and thermostable mutants, and the use of those catalysts for the 

enantioselective epoxidation of olefins. The problem associated with this system and possible 

solutions to overcome these problems are also discussed.   

Chapter 4 is a general conclusion for the thesis. 
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CHAPTER 2 

GENERATION OF A THERMOSTABLE HUMAN CARBONIC 
ANHYDRASE 

Sagarika T. Weerasekara and Levi M. Stanley 

Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, USA  

 

Abstract 

The thermostability of the wild-type of human carbonic anhydrase[Zn] was improved 

with the use of site-directed mutagenesis to introduce six mutations in defined positions of 

the wild-type enzyme. The improved thermostability of the mutant was confirmed by an 

esterase activity assay and comparison to the wild-type. The importance of the generation of 

metalloenzymes with improved thermostability is to use them to generate artificial 

metalloenzymes with improved catalytic activities. This thermostable mutant will be used to 

generate a manganese-substituted human carbonic anhydrase for the catalytic 

enantioselective epoxidation of olefins. 

 

 

Introduction 

Artificial metalloenzymes are a promising class of hybrid catalysts for 

enantioselective, regioselective and chemoselective organic transformations. However, 

limitations such as poor stability at elevated temperatures, in organic solvents and at varied 

pH must be overcome before metalloenzymes can be utilized as catalysts for additional 

reaction types. Currently, reactions catalyzed by artificial metalloenzymes have low turnover 
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numbers, limited catalyst lifetime and a limited scope of substrates. Therefore, the need and 

the search for new approaches for further improvement of the activity and stability of 

artificial metalloenzymes have become increasingly important over the last couple of 

decades. One successful method for the generation of artificial metalloenzymes with 

improved activity and/ or selectivity is directed evolution. This concept is based on the 

repeated cycles of random gene mutagenesis, expression, screening and isolation of evolved 

genes. This sequence is repeated until the desired activity and/or selectivity is achieved. 

Reetz published the first report on the directed evolution of lipase (from Pseudomonas 

aeruginosa) and used the resulting mutant in the catalytic, enantioselective hydrolysis of 

racemic p-nitrophenyl-2-methyldeconate.1  

A number of different methods are available for gene mutagenesis, of which site-

saturation mutagenesis,2, 3 site-directed mutagenesis,4, 5 combinatorial mutagenesis 6, 7, 8 and 

insertional mutagenesis9 methods are most common. Site-saturation mutagenesis is the 

process of introducing all possible random mutations into a specific position of the amino 

acid sequence of the enzyme in order to generate a library of mutant genes (Figure 1). This 

process is followed by a protein expression, purification of the enzyme and finally screening 

the activity and/ or selectivity for a specific reaction. If any improvement is observed, the 

evolved gene is isolated and exposed to further rounds of site-saturation mutagenesis for 

additional improvement.10   
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Figure 1: A schematic representation of directed evolution on human carbonic anhydrase 

 

Site-directed mutagenesis is the introduction of a specific mutation into a defined 

position of the amino acid sequence of the enzyme. Polymerase chain reaction (PCR) is an 

important biotechnological tool used to create these precise mutations and to amplify these 

DNA sequences.11 The short oligodeoxyribonucleotide fragments (primers) carry the specific 

mutation designed and these are complementary to the template DNA. Denaturation of the 

DNA template, annealing of mutagenic primers containing the desired mutation and the 

extension of the primers are the three basic steps of site-directed mutagenesis by PCR (Figure 
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2). Repeated cycles of these three steps rapidly amplify the new DNA sequence with the 

desired mutation at a pre-defined position. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Schematic representation of site-directed mutagenesis by PCR 

 

This chapter describes the generation of thermostable variant of human carbonic 

anhydrase (hCAII) to be used as an artificial metalloenzyme catalyst for the epoxidation of 4-

chlorostyrene. The current literature precedents on this topic show that manganese-

substituted carbonic anhydrase works as a hybrid catalyst to achieve good enantioselectivity 

for the epoxidation reaction, but yields of the epoxide product are poor.12, 13 Therefore, site-

directed mutagenesis was used to introduce thermostability to the wild-type of human 
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carbonic anhydrase in order to improve the catalytic activity of the artificial metalloenzyme 

generated. The thermostable variant was generated by the sequential introduction of six 

mutations into the amino acid sequence of the wild-type of human carbonic anhydrase.14 

PCR was used to amplify each mutant DNA sequence followed by expression and the 

isolation of mutant plasmids. Hydratase activity assays14, 15 and esterase activity assays15, 16 

are the common methods used to determine the activity of the mutants of human carbonic 

anhydrase. In this study, esterase activity assay was used to study the thermostability. 

 

 

 Results and Discussion 

1) Generation of a thermostable variant of human carbonic anhydrase 

The generation of a thermostable variant of human carbonic anhydrase begins with 

the sequential introduction of six single-point mutations to the amino acid sequence of the 

wild-type enzyme.14 QuikChange II XL site-directed mutagenesis kit, a double stranded 

circular DNA (parent plasmid) as the template DNA and a two stage polymerase reaction 

protocol (Wang protocol)17 are used for the site-directed mutagenesis method. The primers 

that carry these specific mutations were designed and ordered from Integrated DNA 

Technologies (IDT) and a list of primers used is shown in the Table 1. 
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Table 1: List of primes used for the site-directed mutagenesis of human carbonic anhydrase 

 

Primer  Type Sequence 

Ala65 
Thr 

Forward 5’(ATCCTCAACAATGGTCATACATTCAACGTGGAGTTTGAT)3’  

Reverse 3’(TAGGAGTTGTTACCAGTATGTAAGTTGCACCTCAAACTA)5’ 

Leu223 
Ser 

Forward 5’(GTCAGCAGCGAGCAGGTGAGCAAATTCCGTAAACTTAAC)3’ 

Reverse 3’(CAGTCGTCGCTCGTCCACTCGTTTAAGGCATTTGAATTG)5’ 

Leu239 
Pro 

Forward 5’(GAGGGTGAACCCGAAGAACCAATGGTGGACAACTGGCGC)3’ 

Reverse 3’(CTCCCACTTGGGCTTCTTGGTTACCACCTGTTGACCGCG)5’ 

Ala247 
Thr 

Forward 5’(GTGGACAACTGGCGCCCAACACAGCCACTGAAGAACAGG)3’ 

Reverse 3’(CACCTGTTGACCGCGGGTTGTGTCGGTGACTTCTTGTCC)5’ 

Leu100 
His 

Forward 5’(CACTTTCACTGGGGTTCACATGATGGACAAGGTTCAGAG)3’ 

Reverse 3’(GTGAAAGTGACCCCAAGTGTACTACCTGTTCCAAGTCTC)5’ 

Lys153 
Asn 

Forward 5’(TTGAAGGTTGGCAGCGCTAACCCGGGCCTTCAGAAAGTT)3’ 

Reverse 3’(TTGAAGGTTGGCAGCGCTAACCCGGGCCTTCAGAAAGTT)5’ 

 

The site-directed mutagenesis method is used for the sequential introduction of 

mutations into defined positions of the wild-type enzyme. After the PCR amplification, 

template DNA (parent plasmid) is digested and the plasmid containing the resulting mutation 

is transformed into BL-21 cells, grown overnight on agar plates, and the plasmids are isolated 

and sequenced. The sequenced plasmid carrying the mutation is used as the template DNA 

for the second round of site-directed mutagenesis and the same procedure is done to 

introduce the second mutation. All six mutations mentioned in Table 1 are introduced by this 
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process and were introduced in the following order: Alanine 65 to Threonine, Leucine 239 to 

Proline, Leucine 223	
   to Serine, Alanine 247 to Threonine, Lysine 153 to Asparagine and 

Leucine 100 to Histidine. The DNA sequences of the six mutants generated are shown in 

Figures 3-8. 

 

NNNNNNNNNNNTNNNNNNNANTATTTTNTTNANNTTAAGAAGGAGATATACCATGGC
CCATCACTGGGGGTACGGCAAACACAACGGACCTGAGCACTGGCATAAGGACTTCCC
CATTGCCAAGGGAGAGCGCCAGTCCCCTGTTGACATCGACACTCATACAGCCAAGTA
TGACCCTTCCCTGAAGCCCCTGTCTGTTTCCTATGATCAAGCAACTTCCCTGAGGAT
CCTCAACAATGGTCATACATTCAACGTGGAGTTTGATGACTCTCAGGACAAAGCAGT
GCTCAAGGGAGGACCCCTGGATGGCACTTACAGATTGATTCAGTTTCACTTTCACTG
GGGTTCACTTGATGGACAAGGTTCAGAGCATACTGTGGATAAAAAGAAATATGCTGC
AGAACTTCACTTGGTTCACTGGAACACCAAATATGGGGATTTTGGGAAAGCTGTGCA
GCAACCTGATGGACTGGCCGTTCTAGGTATTTTTTTGAAGGTTGGCAGCGCTAAACC
GGGCCTTCAGAAAGTTGTTGATGTGCTGGATTCCATTAAAACAAAGGGCAAGAGTGC
TGACTTCACTAACTTCGATCCTCGTGGCCTCCTTCCTGAATCCCTGGATTACTGGAC
CTACCCAGGCTCACTGACCACCCCTCCTCTTCTGGAATGTGTGACCTGGATTGTGCT
CAAGGAACCCATCAGCGTCAGCAGCGAGCAGGTGTTGAAATTCCGTAAACTTAACTT
CAATGGGGAGGGTGAACCCGAAGAACTGATGGTGGACAACTGGCGCCCAGCTCAGCC
ACTGAAGAACAGGCAAATCAAAGCTTCCTTCAAATAAGATGGTCCCATAGTCTGTAT
CCAAATAATGAATCTTCGGGTGTTTCCCTTTAGCTAAGCACAGATCCGGCTGCTAAC
AAAGCCCGAAAGGAAGCTGAGTT 
 
Figure 3: DNA sequence of the Ala65Thr mutant 

 

NNNMNNNNANNNCNCTARATATTTTGTTTACTTTAAGAAGGAGATATACCATGGCCC
ATCACTGGGGGTACGGCAAACACAACGGACCTGAGCACTGGCATAAGGACTTCCCCA
TTGCCAAGGGAGAGCGCCAGTCCCCTGTTGACATCGACACTCATACAGCCAAGTATG
ACCCTTCCCTGAAGCCCCTGTCTGTTTCCTATGATCAAGCAACTTCCCTGAGGATCC
TCAACAATGGTCATACATTCAACGTGGAGTTTGATGACTCTCAGGACAAAGCAGTGC
TCAAGGGAGGACCCCTGGATGGCACTTACAGATTGATTCAGTTTCACTTTCACTGGG
GTTCACTTGATGGACAAGGTTCAGAGCATACTGTGGATAAAAAGAAATATGCTGCAG
AACTTCACTTGGTTCACTGGAACACCAAATATGGGGATTTTGGGAAAGCTGTGCAGC
AACCTGATGGACTGGCCGTTCTAGGTATTTTTTTGAAGGTTGGCAGCGCTAAACCGG
GCCTTCAGAAAGTTGTTGATGTGCTGGATTCCATTAAAACAAAGGGCAAGAGTGCTG
ACTTCACTAACTTCGATCCTCGTGGCCTCCTTCCTGAATCCCTGGATTACTGGACCT
ACCCAGGCTCACTGACCACCCCTCCTCTTCTGGAATGTGTGACCTGGATTGTGCTCA
AGGAACCCATCAGCGTCAGCAGCGAGCAGGTGTTGAAATTCCGTAAACTTAACTTCA
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ATGGGGAGGGTGAACCCGAAGAACCAATGGTGGACAACTGGCGCCCAGCTCAGCCAC
TGAAGAACAGGCAAATCAAAGCTTCCTTCAAATAAGATGGTCCCATAGTCTGTATCC
AAATAATGAATCTTCGGGTGTTTCCCTTTAGCTAAGCACAGATCCGGCTGCTAACAA
AGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACC
CCTTGGGGGCCTCTAAACGGGGTCTTGAGGGGGTTTTTTGCTGAA 
 
Figure 4: DNA sequence of the (Ala65Thr + Leu239Pro) mutant 

 

NNNMNNNANTCNTCTANANATTTTGTTTACTTTAAGAAGGAGATATACCATGGCCCA
TCACTGGGGGTACGGCAAACACAACGGACCTGAGCACTGGCATAAGGACTTCCCCAT
TGCCAAGGGAGAGCGCCAGTCCCCTGTTGACATCGACACTCATACAGCCAAGTATGA
CCCTTCCCTGAAGCCCCTGTCTGTTTCCTATGATCAAGCAACTTCCCTGAGGATCCT
CAACAATGGTCATACATTCAACGTGGAGTTTGATGACTCTCAGGACAAAGCAGTGCT
CAAGGGAGGACCCCTGGATGGCACTTACAGATTGATTCAGTTTCACTTTCACTGGGG
TTCACTTGATGGACAAGGTTCAGAGCATACTGTGGATAAAAAGAAATATGCTGCAGA
ACTTCACTTGGTTCACTGGAACACCAAATATGGGGATTTTGGGAAAGCTGTGCAGCA
ACCTGATGGACTGGCCGTTCTAGGTATTTTTTTGAAGGTTGGCAGCGCTAAACCGGG
CCTTCAGAAAGTTGTTGATGTGCTGGATTCCATTAAAACAAAGGGCAAGAGTGCTGA
CTTCACTAACTTCGATCCTCGTGGCCTCCTTCCTGAATCCCTGGATTACTGGACCTA
CCCAGGCTCACTGACCACCCCTCCTCTTCTGGAATGTGTGACCTGGATTGTGCTCAA
GGAACCCATCAGCGTCAGCAGCGAGCAGGTGTCCAAATTCCGTAAACTTAACTTCAA
TGGGGAGGGTGAACCCGAAGAACCAATGGTGGACAACTGGCGCCCAGCTCAGCCACT
GAAGAACAGGCAAATCAAAGCTTCCTTCAAATAAGATGGTCCCATAGTCTGTATCCA
AATAATGAATCTTCGGGTGTTTCCCTTTAGCTAAGCACAGATCCGGCTGCTAACAAA
GCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCC
CCTTGGGGGCCTCTAAACGGG 
 
Figure 5: DNA sequence of the (Ala65Thr + Leu239Pro + Leu223Ser) mutant 

 

KTTNTCCARAANTCTCTGATATTTTGTTTACTTTAAGAAGGAGATATACCATGGCCC
ATCACTGGGGGTACGGCAAACACAACGGACCTGAGCACTGGCATAAGGACTTCCCCA
TTGCCAAGGGAGAGCGCCAGTCCCCTGTTGACATCGACACTCATACAGCCAAGTATG
ACCCTTCCCTGAAGCCCCTGTCTGTTTCCTATGATCAAGCAACTTCCCTGAGGATCC
TCAACAATGGTCATACATTCAACGTGGAGTTTGATGACTCTCAGGACAAAGCAGTGC
TCAAGGGAGGACCCCTGGATGGCACTTACAGATTGATTCAGTTTCACTTTCACTGGG
GTTCACTTGATGGACAAGGTTCAGAGCATACTGTGGATAAAAAGAAATATGCTGCAG
AACTTCACTTGGTTCACTGGAACACCAAATATGGGGATTTTGGGAAAGCTGTGCAGC
AACCTGATGGACTGGCCGTTCTAGGTATTTTTTTGAAGGTTGGCAGCGCTAAACCGG
GCCTTCAGAAAGTTGTTGATGTGCTGGATTCCATTAAAACAAAGGGCAAGAGTGCTG
ACTTCACTAACTTCGATCCTCGTGGCCTCCTTCCTGAATCCCTGGATTACTGGACCT
ACCCAGGCTCACTGACCACCCCTCCTCTTCTGGAATGTGTGACCTGGATTGTGCTCA
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AGGAACCCATCAGCGTCAGCAGCGAGCAGGTGTCCAAATTCCGTAAACTTAACTTCA
ATGGGGAGGGTGAACCCGAAGAACCAATGGTGGACAACTGGCGCCCAACACAGCCAC
TGAAGAACAGGCAAATCAAAGCTTCCTTCAAATAAGATGGTCCCATAGTCTGTATCC
AAATAATGAATCTTCGGGTGTTTCCCTTTAGCTAAGCACAGATCCGGCTGCTAACAA
AGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACC
CCCTTGGGGCCTCTAAACGGGGTCTTGAAGGGGTTTTTTGCTGAAANGGAGGAACCT
ATATCCGGAAGGGGAATTCCCSGCGCCGCGATGCCCCTTTCGGTCTTCGAATAAAAT
ACCTKGTGACGGAAGRATCMMYTTCGCAGAAATAAATAAAATCCTGGGGGTCCCTGG
TTGAWWACCGGGGAARCCCCTGGGGCCAACTTTTTGGGCGAAAAATGGAAAMCGTTT
GATTCGGN 
 
Figure 6: DNA sequence of the (Ala65Thr + Leu239Pro + Leu223Ser + Ala247Thr) 

                mutant 

 
NNNMNNANNTCTCTARATATTTTGTTTACTTTAAGAAGGAGATATACCATGGCCCAT
CACTGGGGGTACGGCAAACACAACGGACCTGAGCACTGGCATAAGGACTTCCCCATT
GCCAAGGGAGAGCGCCAGTCCCCTGTTGACATCGACACTCATACAGCCAAGTATGAC
CCTTCCCTGAAGCCCCTGTCTGTTTCCTATGATCAAGCAACTTCCCTGAGGATCCTC
AACAATGGTCATACATTCAACGTGGAGTTTGATGACTCTCAGGACAAAGCAGTGCTC
AAGGGAGGACCCCTGGATGGCACTTACAGATTGATTCAGTTTCACTTTCACTGGGGT
TCACTTGATGGACAAGGTTCAGAGCATACTGTGGATAAAAAGAAATATGCTGCAGAA
CTTCACTTGGTTCACTGGAACACCAAATATGGGGATTTTGGGAAAGCTGTGCAGCAA
CCTGATGGACTGGCCGTTCTAGGTATTTTTTTGAAGGTTGGCAGCGCTAACCCGGGC
CTTCAGAAAGTTGTTGATGTGCTGGATTCCATTAAAACAAAGGGCAAGAGTGCTGAC
TTCACTAACTTCGATCCTCGTGGCCTCCTTCCTGAATCCCTGGATTACTGGACCTAC
CCAGGCTCACTGACCACCCCTCCTCTTCTGGAATGTGTGACCTGGATTGTGCTCAAG
GAACCCATCAGCGTCAGCAGCGAGCAGGTGTCCAAATTCCGTAAACTTAACTTCAAT
GGGGAGGGTGAACCCGAAGAACCAATGGTGGACAACTGGCGCCCAACACAGCCACTG
AAGAACAGGCAAATCAAAGCTTCCTTCAAATAAGATGGTCCCATAGTCTGTATCCAA
ATAATGAATCTTCGGGTGTTTCCCTTTAGCTAAGCACAGATCCGGCTGCTAACAAAG
CCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAACAATAACTAGCATAACCCC
TTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCG
GATGGGAATTCCCCGCGCGCGATGCCCTTTCGTCTTCGAATAAATACCTGGTGACGG
AAGATCMCTTCGCAAAATAAATAAATCCTGGGTGTCCCKGTTGAAACCGGGGAAGCC
CTGGGGCCAACYTTTTGGSCRAAAATGAAAMMGTTTGATCGGSMMCGTAAAAAGGTT
CCAACTTTTCACCNATAATGRAAATAAGAWTCMCTAMCCGGGGSSGN 
 
Figure 7: DNA sequence of the (Ala65Thr + Leu239Pro + Leu223Ser + Ala247Thr + 

                Lys153Asn) mutant 
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NNNNGGANTNCNCTAGAATATTTTGTTTACTTTAAGAAGGAGATATACCATGGCCCA
TCACTGGGGGTACGGCAAACACAACGGACCTGAGCACTGGCATAAGGACTTCCCCAT
TGCCAAGGGAGAGCGCCAGTCCCCTGTTGACATCGACACTCATACAGCCAAGTATGA
CCCTTCCCTGAAGCCCCTGTCTGTTTCCTATGATCAAGCAACTTCCCTGAGGATCCT
CAACAATGGTCATACATTCAACGTGGAGTTTGATGACTCTCAGGACAAAGCAGTGCT
CAAGGGAGGACCCCTGGATGGCACTTACAGATTGATTCAGTTTCACTTTCACTGGGG
TTCACATGATGGACAAGGTTCAGAGCATACTGTGGATAAAAAGAAATATGCTGCAGA
ACTTCACTTGGTTCACTGGAACACCAAATATGGGGATTTTGGGAAAGCTGTGCAGCA
ACCTGATGGACTGGCCGTTCTAGGTATTTTTTTGAAGGTTGGCAGCGCTAACCCGGG
CCTTCAGAAAGTTGTTGATGTGCTGGATTCCATTAAAACAAAGGGCAAGAGTGCTGA
CTTCACTAACTTCGATCCTCGTGGCCTCCTTCCTGAATCCCTGGATTACTGGACCTA
CCCAGGCTCACTGACCACCCCTCCTCTTCTGGAATGTGTGACCTGGATTGTGCTCAA
GGAACCCATCAGCGTCAGCAGCGAGCAGGTGTCCAAATTCCGTAAACTTAACTTCAA
TGGGGAGGGTGAACCCGAAGAACCAATGGTGGACAACTGGCGCCCAACACAGCCACT
GAAGAACAGGCAAATCAAAGCTTCCTTCAAATAAGATGGTCCCATAGTCTGTATCCA
AATAATGAATCTTCGGGTGTTTCCCTTTAGCTAAGCACAGATCCGGCTGCTAACAAA
GCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCC
CTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCC
GGATGGGAATTCCCCGCGCGCGATGCCCTTTCGTCTTCGAATAAATACCTGTGACGG
AAGATCMCTTCGCARAAWWAAATAAATCCTGGGKGTCCCTGTTGAWACCGGGAAASC
CCTG 
 
Figure 8: DNA sequence of the (Ala65Thr + Leu239Pro + Leu223Ser + Ala247Thr + 

                Lys153Asn + Leu100His) the thermostable mutant 

 

2) Determination of the thermostability of the human carbonic anhydrase mutant 

The thermostability was studied using an esterase activity assay and the activity of the 

thermostable mutant was compared to the wild-type enzyme to determine the level of 

thermostability introduced to the mutant generated by site-directed mutagenesis.17 The ester 

hydrolysis activity of human carbonic anhydrase was studied by monitoring the change in the 

UV-Vis absorbance (at 348 nm) of the hydrolysis of 4-nitrophenylacetate to 4-nitrophenylate 

ion in the presence of the human carbonic anhydrase. The purified wild-type and mutant 

hCAII[Zn] were each used for the esterase activity assay. A range of temperatures (50, 55, 

60, 65, 70 oC) was selected and enzyme solutions used for the assay were incubated at each 
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temperature for 2 hours prior to the assay. The percentage esterase activity is determined by 

the following equation.  

% Esterase activity =   (Activity after treatment)      x 100 

                                     (Activity before treatment) 

A) No incubation 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

B) Incubation at 50 oC 
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C) Incubation at 55 oC 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D) Incubation at 60 oC 
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E) Incubation at 65 oC 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

F) Incubation at 70 oC 

 

 

 

 

 

 

 

 

 

Figure 9: Esterase activity of wild type and thermostable mutant at elevated  

                 temperatures 
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Table 2: % Esterase activity of wild-type and mutant human carbonic anhydrase14  

 

 

 

 
 

 

 

 

 

 

 

3) Levels of protein expression of wild-type, mutants and thermostable mutant   

Wild-type and mutated plasmid DNA were used for protein expressions to generate 

wild-type and mutant hCAII[Zn]. Separation and purification carried out obtain pure 

hCAII[Zn]. Table 3 summarizes the amounts of pure wild-type and mutant apo-hCAII 

obtained from each protein expression. Apo-enzyme was generated by the addition of a 

chelating agent 2,6-pyridinedicarbxylate followed by a dialysis with BES buffer until the 

chelating agent was completely removed. 

 

 

 

 

 

Temperature 

(oC) 

% Esterase activity 

(Experimental) 

% Esterase activity  

(Literature report) 

Wild-Type Mutant Wild-Type Mutant 

50 31 100 Not reported Not reported 

55 5 100 12 100 

60 1 94 0 100 

65 2 79 0 88 

70 1 6 0 0 
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Table 3: Protein expression levels of wild-type and mutant  

            a- average of 13 protein expressions 
b- average of 6 protein expressions 
all others single protein expression 

 

 

 

Entry Mutant hCAII[Mn] Amount of apo-hCAII 

(mg/L of culture) 

1 Wild-type 189.0a 

2 Ala65Thr 184.0 

3 Leu239Pro 195.0 

4 Leu223Ser 205.0 

5 Ala247Thr 71.0 

6 Ala65Thr+Leu239Pro 66.0 

7 Ala65Thr+Ala247Thr 81.0 

8 Ala65Thr+Leu239Pro+Ala247Thr 160.0 

9 Ala65Thr+Leu239Pro+Leu223Ser 136.0 

10 Ala65Thr+Leu239Pro+Leu223Ser+Ala247Thr 77.0 

11 Ala65Thr+Leu239Pro+Leu223Ser+Ala247Thr+ 
Leu100His 

75.0 

12 Ala65Thr+Leu239Pro+Leu223Ser+Ala247Thr+ 
Lys153Asn 

108.0 

13 Ala65Thr+Leu239Pro+Leu223Ser+Ala247Thr+ 
Leu100His+Lys153Asn (Thermostable mutant) 

173.0b 
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Conclusion 

A thermostable variant of human carbonic anhydrase is generated successfully using 

site-directed mutagenesis. This thermostable mutant is a combination of six single-point 

mutations in defined positions namely Alanine 65 to Threonine, Leucine 100 to Histidine, 

Lysine 153 to Asparagine, Leucine 223 to Serine, Leucine 239 to Proline and Alanine 247 to 

Threonine. Protein expressions are successfully carried out to obtain wild-type and mutant 

hCAII[Zn]. The wild-type and thermostable mutant show similar levels of protein 

expressions. The thermostability of the mutant is confirmed by conducting an esterase 

activity assay compared to the wild-type of human carbonic anhydrase. The mutant generated 

shows a remarkably high stability at elevated temperatures (65 oC) compared to the wild-type 

enzyme, which is not stable at temperatures above 55 oC. This thermostable variant is a good 

candidate for the generation of an artificial metalloenzymes since it has improved stability at 

elevated temperatures, which can lead to improved catalytic activity.  

 

Experimental 

Polymerase chain reaction for site-directed mutagenesis and transformation 

The reaction buffer, dNTP, DMSO and Pfu-Ultra High Fidelity DNA polymerase 

were used from a QuikChange II XL site-directed mutagenesis kit for PCR. Polymerase 

chain reaction mixtures were made in two separate PCR tubes (with forward and reverse 

primers) and each contained; 10X reaction buffer (2.5 µL), template DNA (93 ng/ µL, 1.07 

µL), primer (100 ng/ µl, 0.6 µL), dNTP (2 mM, 2.5 µL) dd H2O (16.9 µL), DMSO (0.5 µL) 

and Pfu-Ultra High Fidelity DNA polymerase (0.5 µL). Table 3 shows two-stage thermal 

cycling used for the reaction. 
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Table 4: Two-stage thermal cycling 

 

Stage Step number Temperature (oC) Time 

1 1 95 2 min 30sec 

2 55 1 min 

3 68 10 min 

2 1 95 30 sec 

2 55 1 min 

3 68 10 min 

  

 

The thermal cycling began with stage 1 in the order of step 1, step 2, step 3 and then 

step 2 and 3 were repeated as a cycle (step 2 followed by step 3) for five times. Once stage 1 

was completed forward and reverse reaction mixtures were combined and mixed properly in 

a new PCR tube and subjected to stage 2. Stage 2 was carried out as a cycle with step 1, step 

2, step 3 and repeated for sixteen times. Then the reaction tubes were placed on ice for 2 

minutes followed by the addition of Dpn-1 restriction enzyme (1 µL) to the reaction mixture 

to digest the template DNA. Then the reaction mixture was incubated at 37 oC for 1 hour. 

Next, a microcentrifuge tube containing a pre-frozen BL-21 cell aliquot (50 µL) was thawed 

on ice and transferred into a pre-chilled 14 mL BD Falcon polypropylene round bottom tube. 

Then 2 µL of β-mercaptoethanol mix was added to cells, mixed properly and incubated on 

ice for 10 minutes swirling the mixture gently every 2 minutes. The 5 µL of Dpn-1 treated 

PCR product was added to cell mixture, mixed thoroughly and incubated on ice for another 
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30 minutes. The mixture was heat shocked at 42 oC for 30 seconds in water bath and then 

incubated on ice for 2 minutes. The cell mixture was rescued with SOC (250 µL of SOB, 5 

µL of 1M filter sterilized glucose, which was pre-heated at 42 oC for 2 minutes) and placed 

in a shaker for 1 hour (37 oC, 250 rpm). Finally the culture was plated on pre-heated (1 hour 

at 37 oC) LB-ampicillin agar plates (250 µL of culture on one agar plate, no dilution with dd 

H2O) and incubated for 16 hours at 37 oC in an incubator. Sterile conditions were maintained 

throughout the procedure. 

 

Isolation of plasmids for DNA sequencing 

QIAprep Spin Miniprep kit (50) purchased from QIAGEN was used for the following 

procedure. A single colony from an agar plate (grown for 16 hours) was picked using an 

autoclaved toothpick and introduced to a mixture of LB broth (5 mL) and ampicillin (100 

mg/mL, 5 µL) in a 14 mL BD Falcon polypropylene round bottom tube and placed in a 

shaker for incubation for 16 hours (37 oC, 250 rpm). Next, cells were pelleted by centrifuging 

at 5000 rpm for 3 minutes at room temperature. The cell pellet was re-suspended in buffer P1 

(250 µL) and transferred to a microcentrifuge tube. Then buffer P2 (250 µL) was added and 

mixed thoroughly by inverting the tube 4-6 times until the solution become clear. Next, 

buffer N3 (350 µL) was added and mixed immediately by inverting the tube 4-6 times and 

centrifuged at 13000 rpm for 10 minutes. Then the supernatant was transferred to a QIAprep 

spin column, centrifuged at 13000 rpm for 1 minute and the flow through was discarded. The 

spin column was washed with buffer PB (500 µL), centrifuged at 13000 rpm for 1 minute 

and the flow through was discarded. Next the spin column was washed with buffer PE (750 

µL), centrifuged at 13000 rpm for 1 minute and the flow through was discarded. The spin 
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column was centrifuged at 13000 rpm for another 1 minute to remove any residual washing 

buffers. Finally the QIAprep column was placed on a clean 1.5 mL microcentrifuge tube 

followed by the addition of buffer EB (30 µL) to the center of the spin column and it was left 

to stand for 2-3 minutes before centrifugation at 13000 rpm for 1 minute to elute the plasmid 

DNA. All of these DNA samples were sequenced by the DNA facility, Office of 

Biotechnology at Iowa State University. 

 

Transformation of BL-21 chemically competent cells 

First, a microcentrifuge tube containing a pre-frozen BL-21 cell aliquot (50 µL) was 

thawed on ice and transferred into a pre-chilled 14 mL BD Falcon polypropylene round-

bottom tube. Then, wild-type or mutant plasmid containing the DNA encoding hCAII (300 

ng) was added to the cells, mixed thoroughly and left on ice for 30 minutes. Next, a heat 

shock was given to the mixture at 42 oC for 30 seconds in a water bath and incubated on ice 

for 2 minutes. After that the cell mixture was rescued with SOC (250 µL of SOB, 5 µL of 

1M filter sterilized glucose, which was pre-heated at 42 oC for 2 minutes) and placed in a 

shaker for 1 hour (37 oC, 250 rpm). Then, culture was plated on pre-heated (1 hour at 37 oC) 

LB-ampicillin agar plates (90:10 µL of dd H2O: culture) and incubated for 16 hours at 37 oC 

in an incubator. Next, a single colony from the agar plate was picked up using an autoclaved 

toothpick and introduced to a mixture of LB broth (5 mL) and ampicillin (100 mg/ mL, 5 µL) 

in a 14 mL BD Falcon polypropylene round-bottom tube and placed in a shaker for 

incubation for 16 hours (37 oC, 250 rpm) overnight.  
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Protein expression 

First, one overnight culture was added to each shaker flask with 490 mL of 

autoclaved induction media (10.0 g of bacto-tryptone, 5.0 g of yeast extract, 2.34 g of NaCl, 

30 mL of 6XM9 salt, 0.333 mL of 0.3 M ZnSO4 diluted to 490 mL), ampicillin (100 mg/ mL, 

0.5 mL) and 20% filter-sterilized glucose (10.0 mL). Then shaker flasks were placed in the 

shaker (37 oC, 250 rpm) and allowed to grow until OD600~ 1.0. Once the OD600 value reached 

that number protein expression was induced by adding ZnSO4 (0.3 M, 0.75 mL) and IPTG 

(100 mM, 1.25 mL) and shaking was continued for another 6 hours. After that inhibitors 

PMSF (1 mg/ mL, 2.0 mL) and TAME (1 mg/ mL, 1 mL) were added and cells were pelleted 

by centrifuging at 12000 rpm for 45 minutes at 4 oC. Next the cell pellet from a 1 L culture 

was re-suspended in 200 mL of lysis buffer with dithiothreitol (50.0 mL of 1M tris-sulfate, 

50.0 mL of 1 M NaCl, 40.0 mL of 0.25 M EDTA, 0.66 mL of 0.3 M ZnSO4, 1.0 mL of 10 

mg/ mL PMSF, 1.0 mL of 1 mg/ mL TAME and 0.1542 g of dithiothreitol diluted to 1 L, pH 

= 8.0), lysozyme was added (1 mg/ mL of buffer), and the mixture was placed inside the 

shaker for 1 hour (37 oC, 250 rpm).  After that the cell-buffer mixture was centrifuged (5000 

rpm, 75 minutes, 4 oC), the supernatant was collected, 10% streptomycin sulfate (1/10 

volume of the supernatant) was added and the solution was stirred at 4 oC for 15 minutes. 

Next the supernatant was centrifuged at 5000 rpm for 60 minutes at 4 oC, and the clear 

supernatant containing the crude hCAII[Zn] was collected without any cell materials which 

contains the crude hCAII[Zn]. Then the supernatant was transferred to centrifugal dialysis 

tubes (MWCO 10 kDa) and centrifuged with tris-sulfate buffer (pH = 8.0, 10 mM) five times 

each for 50 minutes.  
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Protein purification 

First, DEAE-sephacel gel (30.0 mL per 1 L culture) was equilibrated with 2 column 

volumes of 1 M tris-sulfate (pH = 8.0, 60 mL) followed by 5 column volumes of 10 mM tris-

sulfate (pH = 8.0, 150 mL). Then the gel was poured in to an flask with supernatant collected 

at the end of the protein expression (crude hCAII[Zn]) and equilibrated at 4 oC for 30 

minutes. Next the mixture was transferred into a fritted filter funnel and washed with 1 

column volume of 10 mM tris-sulfate (pH = 8.0, 30 mL) and 1 column volume of 20 mM 

tris-sulfate (pH = 8.0, 30 mL) and fractions were collected into centrifuge tubes containing 

purified hCAII[Zn]. SDS-PAGE technique was to determine the purity of the hCAII[Zn] and 

a clear band was observed at ~29 kDa with no other major bands. 

 

Esterase activity assay 

The thermostability of human carbonic anhydrase[Zn] wild-type and thermostable 

mutant were determined by the esterase activity assay method. During the assay p-

nitrophenylacetate was hydrolyzed to p-nitrophenylate ion and the change in the absorbance 

of the assay solution was measured at 348 nm using NanoDrop 2000/2000c 

spectrophotometer over a time period of 15 minutes. Enzymatic assay solution was prepared 

in a cuvette by adding tris-sulfate buffer (50 mM, 1.4 mL, pH = 8.0), p-nitrophenylacetate (3 

mM in acetone, 1.0 mL), dd H2O (0.5 mL) and hCAII[Zn] solution (0.1 mM, 0.1 mL). The 

solution was mixed properly immediately after the addition of the enzyme solution and an 

initial absorbance was measured. The absorbance was then monitored over a 15 minute time 

period at 3-minute time intervals. Two separate assay solutions were monitored for changes 

in absorbance, one with the wild-type enzyme and another one with the thermostable mutant. 
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A second set of assay solutions were made using the same reagents, the same volumes, but 

with hCAII[Zn] wild-type and thermostable mutant solutions incubated at 50 oC for 2 hours 

in a water bath prior to the assay solution preparation. The absorbance was monitored over a 

15 minute time period at 3-minute time intervals.  A control was made in a cuvette by adding 

tris-sulfate buffer (50 mM, 1.4 mL, pH = 8.0), p-nitrophenylacetate (3 mM in acetone, 1.0 

mL) and dd H2O (0.6 mL) to observe the non-catalyzed p-nitrophenylacetate hydrolysis in 

this system and to subtract this effect to report the hydrolysis driven by the enzyme. This 

experiment was done to cover a range of temperatures from 50 – 70 oC in 5 oC temperature 

increments. 
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CHAPTER 3 

ENANTIOSELECTIVE EPOXIDATION CATALYZED BY MANGANESE-

SUBSTITUTED HUMAN CARBONIC ANHDRASE  

Sagarika T. Weerasekara and Levi M. Stanley 

Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, USA  

 

Abstract 

A thermostable human carbonic anhydrase and wild-type of human carbonic 

anhydrase were used to generate manganese-substituted human carbonic anhydrase using the 

dative anchoring strategy. The manganese-substituted human carbonic anhydrase 

(hCAII[Mn]) was used as a catalyst for enantioselective epoxidation. The identification of 

reaction conditions, impact of the oxidant on the catalytic activity, enzyme stability, and 

selectivity of both hCAII[Mn] catalysts were studied. The hypothesis was that the 

thermostable mutant of hCAII[Mn] might overcome the problem of catalyst degradation 

under oxidative reaction conditions leading to improved yields and enantioselectivities 

compared to the wild-type hCAII[Mn]. 

 

Introduction 

Artificial metalloenzymes are an important class of hybrid catalysts that has been 

developed and used for enantioselective, regioselective and chemoselective organic 

transformations over the past couple of decades. Artificial metalloenzymes are widely 

studied as catalyst systems for hydrogenation1, 2, 3, 4 hydroformylation5, 6, 7 and for Diels-

Alder reaction8, 9 and have been used as catalysts for sulfoxidation10 epoxidation of olefins11, 
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12 and oxidation of alcohols13, 14 although these reactions remain underdeveloped as compared 

to variants that use homogeneous catalyst systems.  

The enantioselective epoxidation of alkenes is an important organic transformation in 

synthetic chemistry. Sharpless reported the first example of asymmetric epoxidation of allylic 

alcohols in the presence of a titanium catalyst (Figure 1).15 Since the initial report, many 

examples of metal-catalyzed asymmetric epoxidation of alkenes have been developed.16, 17, 18, 

19 Enantioselective epoxidation can also be achieved using organocatalysts such as chiral 

sulfonium ylides,20 chiral dioxaranes 21 or chiral hydroperoxides.22 

 

 

 

 
 
 
 
Figure 1: Metal-catalyzed asymmetric epoxidation (Sharpless epoxidation of allylic 

                 alcohols)15   

 

Although these methods are effective, artificial metalloenzymes are a potential class 

of catalysts for enantioselective epoxidation that would eliminate the need for small-

molecule, chiral ligands. The metal center can catalyze the desired epoxidation reaction and 

the active site of the enzyme can be utilized as the chiral pocket to impart enantioselectivity. 

Manganese-substituted carbonic anhydrase has been used as a catalyst for enantioselective 

epoxidation of alkenes and promising selectivities have being achieved, but the yields of 

these reactions are poor. There are only two literature reports of this reaction type; one 

published by Kazlauskas11 in 2006 the other by and Soumillion12 in 2006.  Kazlauskas’ report 
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shows that reactions using an artificial metalloenzyme for epoxidation inherently result in 

degradation of the catalyst over the course of the reaction.11 Therefore the need for the 

generation of artificial metalloenzyme catalysts with improved catalytic activity and 

improved oxidative stability to prevent oxidative degradation is the largest challenge 

associated with this type of reactions. In this chapter, the use of wild-type and a thermostable 

manganese-substituted human carbonic anhydrase as catalysts for enantioselective 

epoxidation of 4-chlorostyrene is described (Figure 2). Also, the catalytic activity of the 

thermostable hCAII[Mn] mutant is evaluated under epoxidation reaction conditions to 

determine if the problem of oxidative degradation can be overcome. 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 2: Enantioselective epoxidation of 4-chlorostyrene catalyzed by manganese-  

                 substituted human carbonic anhydrase 

 
 
Results and Discussion 

This section describes the generation of wild-type and thermostable variants of 

manganese-substituted human carbonic anhydrase (hCAII[Mn]) that functions as an 

enantioselective olefin epoxidation catalyst. The identification of reaction conditions and the 
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impact of the oxidant on the catalytic activity, stability, and selectivity of hCAII[Mn] will 

also be discussed.  

Enantioselective epoxidation is carried out using 4-chlorostyrene as the olefin and 

hCAII[Mn]as the catalyst in the presence of BES buffer (N,N-bis(2-hydroxyethyl)-2-

aminoethanesulfonic acid), potassium bicarbonate and hydrogen peroxide. This reaction was 

optimized relative to the loading of hCAII[Mn] catalyst, potassium bicarbonate, hydrogen 

peroxide, type of the buffer and the pH. In an early evaluation of reaction conditions, the best 

conditions observed generated the epoxide product in 7% yield and 74% ee with the wild-

type of hCAII[Mn] as the catalyst (Figure 3). The use of other buffers like phosphate buffer 

or a mixture of BES and phosphate buffer did not generate the product with good 

enantioselectivity. 

 

 

 
 
 
 
 
 
 

Figure 3: Enantioselective epoxidation of 4-chlorostyrene with wild-type hCAII[Mn] 

 

All the mutants generated during the process of making the thermostable mutant are 

transformed for protein expressions and pure mutant carrying hCAII[Zn] are obtained 

followed by the generation of mutant hCAII[Mn]. Epoxidation of 4-chlorostyrene is carried 

Cl
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MnCl2 (0.7 mol%)
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pH = 7.2, 4 oC, 16 h

Cl
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out using these mutant hCAII[Mn] catalysts under the optimized conditions shown in Figure 

3 (Table 1). 

 

Table 1: Enantioselective epoxidation of 4-chlorostyrene with mutant hCAII[Mn] catalyst 

 
Entry Mutant hCAII[Mn] % Yield % ee 

1 Ala65Thr 3 59 

2 Leu239Pro 7 72 

3 Leu223Ser 6 73 

4 Ala247Thr 3 76 

5 Ala65Thr+Leu239Pro 5 65 

6 Ala65Thr+Ala247Thr 2 71 

7 Ala65Thr+Leu239Pro+Ala247Thr 3 72 

8 Ala65Thr+Leu239Pro+Leu223Ser 1 72 

9 Ala65Thr+Leu239Pro+Leu223Ser+Ala247Thr 2 71 

10 Ala65Thr+Leu239Pro+Leu223Ser+Ala247Thr+ 

Leu100His 

2 70 

11 Ala65Thr+Leu239Pro+Leu223Ser+Ala247Thr+ 

Lys153Asn 

5 73 

12 Ala65Thr+Leu239Pro+Leu223Ser+Ala247Thr+ 

Leu100His+Lys153Asn (Thermostable mutant) 

3 67 

13 Wild-type 7 74 
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The yields and enantioselectivities reported for thermostable mutant are not improved 

compared to reaction conducted with the wild-type hCAII[Zn]. These mutant artificial 

metalloenzyme catalysts showed poorer catalytic activity upon the increasing the number of 

mutations compared to the wild-type catalyst (Table1). Leucine 239 to Proline and Leucine 

223 to Serine mutant catalysts showed similar catalytic activity as wild-type (Table 1, entries 

2 and 3) and these single-point mutants would be better candidates for site-saturation 

mutagenesis for further activity improvements. 

 Further optimization of the reaction conditions was required to improve the yield of 

the reaction. Reaction optimizations were conducted using the wild-type hCAII[Mn] and 

thermostable hCAII[Mn] side-by-side under the same conditions in order to compare the 

catalytic activity of the two enzymes. The following variables were evaluated under 

conditions shown in Figure 3 with the following changes; 1) reduced H2O2 amounts gave 

further reduced yields (4.0-1.0 µmol), 2) increased KHCO3 amounts further reduced the 

yields (100-140 µmol), 3) increased catalyst loadings did not make any improvement in 

yields (2.0-10.0 mol%), 4) increased H2O2 amounts did not show an improvement in yields 

(6.0-8.0 µmol).  

The epoxidation reactions were then carried out at higher catalyst loadings (10 mol% 

apo-enzyme) to ensure that small changes in yields and enantioselectivities could be properly 

observed, since varying reaction conditions did not initially appear to have an effect. An 

increased amount of H2O2 (8 µmol) at higher catalyst loading led to an improvement in yield 

with both the wild-type and mutant enzymes (Figure 4).  
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Figure 4: Enantioselective epoxidation with 10 mol% catalyst loading 

 

This promising observation led us to study the effect of reduced KHCO3 amounts 

under otherwise identical reaction conditions, since previous observations showed that the 

increased KHCO3 led to reduced yields in this reaction (Figure 2, Table 2). 

 
 
 
 
 

 

 

Figure 5: Effect of KHCO3 on the enantioselective epoxidation of 4-chlorostyrene 

 

Table 2: Effect of KHCO3 on the enantioselective epoxidation of 4-chlorostyrene 

 

 

 

 

 

Entry KHCO3  

(X µmol) 

Wild Type Thermostable Mutant 

%Yield %ee %Yield %ee 

1 60 11 70 9 62 

2 80 11 68 10 62 

3 100 10 67 9 59 
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Table 2 shows that reduced KHCO3 amounts does not affect the yield but small 

improvement in enantioselectivity were observed. Therefore the amount of KHCO3 was kept 

at 60 µmol for future experiments (Table 2, entry 1) and the effect of H2O2 on the yield and 

enantioselectivity of this reaction was evaluated instead. 

 

 

 

 
 
 

Figure 6: Effect of H2O2 on the enantioselective epoxidation of 4-chlorostyrene 

 

Table 3: Effect of H2O2 on the enantioselective epoxidation of 4-chlorostyrene 

 

Entry H2O2 

(X µmol) 

Wild Type Thermostable Mutant 

%Yield %ee %Yield %ee 

1 8 11 70 9 62 

2 10 14 68 11 61 

3 20 22 66 19 55 

4 40 29 61 26 49 

5 60 34 57 31 45 

6 80 34 55 33 43 

7 100 39 53 38 40 

 
 

Cl

apo-enzyme (10.0 mol%)
MnCl2 (12.8 mol%)

KHCO3(aq)  (60 µmol)
H2O2(aq) (X µmol)
BES buffer (50 mM)
pH = 7.2, 4 oC, 16 h

Cl

O

4-chlorostyrene
(5 µmol)
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A significant effect on the yield and enantioselectivity of the epoxidation of 4-

chlorostyrene is observed as the amount of H2O2 is varied (Figure 6, Table 3). The role of 

H2O2 and KHCO3 in this reaction is to generate a peroxycarbonate anion, which is necessary 

to drive the epoxidation. However, the peroxycarbonate anion also facilitates the degradation 

of hCAII[Mn] during the course of the reaction.11 The enantioselectivity decreases due to the 

degradation of hCAII[Mn]  as a result of a manganese(IV)-oxo species generated during the 

reaction. However, a certain level of selectivity is retained even upon the degradation, 

possibly due to an unfolded enzyme structure or due to the oxidation of some amino acid 

residues inside the active site. Therefore it is important to have a higher amount of H2O2 to 

improve the yield, but a low enough loading to prevent the deterioration of the 

enantioselectivity.  

Until this point, the catalyst loading was maintained at a ratio of apo-enzyme: Mn2+ 

10:12.8 mol% (a slight excess of Mn2+ to facilitate the complete dative anchoring of metal 

catalyst to the active site). However, it was found that a 1:1 ratio of apo-enzyme: Mn2+ leads 

to slightly improved yields in both the wild type and mutant enzyme catalyst systems (Figure 

7). 

 

 
 
 
 
 
 
 
Figure 7: Modified apo-enzyme: Mn2+ ratio for the enantioselective epoxidation of  

                 4-chlorostyrene  
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MnCl2 (10.0 mol%)

KHCO3(aq)  (60 µmol)
H2O2(aq) (100 µmol)
BES buffer (50 mM)
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Next a set of control experiments were conducted to confirm that the hCAII[Mn] is 

the active catalyst in the epoxidation of 4-chlorostyrene (Figure 8, Table 4). The wild-type 

and thermostable hCAII[Zn] did not generate any epoxidation product (Figure 8 conditions, 

10 mol% hCAII[Zn] ). In the absence of apo-enzyme a racemic product is observed (Table 4, 

entry 1). In the absence of MnCl2 or H2O2 this reaction does not proceed to give an epoxide 

product (Table 4, entries 2 and 4). In the absence of KHCO3 an epoxide product is observed 

in a poor yield but with a good enanatioselectivity showing that H2O2 is also capable of 

driving this epoxidation reaction but as not as efficient oxidant relative to the 

peroxycarbonate anion (Table 4, entry 3). All of these observations support the claim that 

hCAII[Mn] is the active catalyst species for the enantioselective epoxidation of 4-

chlorostyrene. 

 

 

 

 

 

 

Figure 8: Control experiments 
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Table 4: Control experiments 

 

Entry Apo-E MnCl2 KHCO3 H2O2 Wild Type Thermostable Mutant 

%Yield %ee %Yield %ee 

1 No Yes Yes Yes 3 Racemic 3 Racemic 

2 Yes No Yes Yes No reaction - No reaction - 

3 Yes Yes No Yes 3 66 2 57 

4 Yes Yes Yes No No reaction - No reaction - 

 

Next, the effect of reduced catalyst loading was evaluated. The catalyst loading was 

reduced from 10 mol% - 1 mol% (Figure 9, Table 5). The yield and the enantioselectivity 

slightly dropped upon the reduction of the catalyst loading from 10 mol% - 1 mol% in both 

systems. However improved turnover numbers were observed (13 turnovers at 2 mol% of 

wild-type apo-enzyme loading, Table 5, entry 3). In fact, reduction of the hCAII[Mn] loading 

to 1.0 mol% resulted in a significant decrease in enantioselectivity (Table 5, entry 4). 

 
 
 
 
 
 
 
 
 
 

Figure 9: Effect of catalyst loading 
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Table 5: Effect of catalyst loading 

 

Entry X mol% Wild Type Thermostable Mutant 

%Yield %ee %Yield %ee 

1 10.0 41 52 38 41 

2 5.0 33 55 30 45 

3 2.0 26 52 24 49 

4 1.0 14 38 12 40 

 

Finally, the epoxidation was conducted at elevated temperatures (up to 65 oC) to 

study the stability of the thermostable hCAII[Mn] catalyst compared to the wild-type (Figure 

10, Table 6). Even though the thermostable hCAII[Zn] mutant showed an excellent 

thermostability at elevated temperatures (Chapter 2, Table 2), the artificial metalloenzyme 

generated from the mutant hCAII[Zn] did not prove to be stable at elevated temperatures 

under these oxidative reaction conditions (Table 6). Yields of the epoxidation product 

decreased dramatically above 37 oC, and no reaction was observed above 55 oC for either 

wild-type enzyme or the thermostable mutant catalysts. 

 
 
 
 
 
 
 
 
 
Figure 10: Effect of temperature on the enantioselective epoxidation of 4-chlorostyrene  

Cl
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Table 6: Effect of temperature on the enantioselective epoxidation of 4-chlorostyrene  

Entry Temperature 

(oC) 

Wild Type Thermostable Mutant 

%Yield %ee %Yield %ee 

1 4 41 52 38 41 

2 RT 18 52 19 43 

3 37 7 51 8 43 

4 45 2 48 2 42 

5 50 1 44 2 43 

6 55 - - 1 39 

7 60 - - - - 

8 65 - - - - 

 

 

 
Conclusion 
 

Through a dative anchoring strategy, wild-type and a thermostable manganese- 

substituted human carbonic anhydrase were successfully generated as catalysts for the 

epoxidation of olefins. Although the thermostability of hCAII[Zn] is improved by the 

introduction of mutations, these mutations do not significantly affect the activity of the 

artificial metalloenzyme hCAII[Mn] generated under oxidative reaction conditions. The best 

reaction conditions for the epoxidation of 4-chlostyrene were identified by the careful 

screening of a variety of reaction variables. Both wild-type and thermostable manganese-

substituted human carbonic anhydrase show good catalytic activity at lower temperatures, but 
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not at elevated temperatures. The thermostability introduced to the wild-type did not translate 

to oxidative stability of the artificial metalloenzymes generated. Upon the reduction of the 

catalyst loading improved turnover numbers were observed. (13 turnovers at 2 mol% of wild-

type apo-enzyme loading). The yields and turnover numbers of the epoxidation of 4-

chlorostyrene are improved, despite some erosion of the enantioselectivity, which is an 

improvement upon the literature precedents.11, 12 

 

 
Experimental 
 

1) Transformation, protein expression, purification and preparation of apo-human 

carbonic anhydrase 

Transformation of BL-21 chemically competent cells 

First, a microcentrifuge tube containing a pre-frozen BL-21 cell aliquot (50 µL) 

was thawed on ice and transferred into a pre-chilled 14 mL BD Falcon polypropylene 

round-bottom tube. Then, wild-type or mutant plasmid containing the DNA encoding 

hCAII (300 ng) was added to the cells, mixed thoroughly and left on ice for 30 

minutes. Next, a heat shock was given to the mixture at 42 oC for 30 seconds in a 

water bath and incubated on ice for 2 minutes. After that the cell mixture was rescued 

with SOC (250 µL of SOB, 5 µL of 1M filter sterilized glucose, which was pre-

heated at 42 oC for 2 minutes) and placed in a shaker for 1 hour (37 oC, 250 rpm). 

Then, culture was plated on pre-heated (1 hour at 37 oC) LB-ampicillin agar plates 

(90:10 µL of dd H2O: culture) and incubated for 16 hours at 37 oC in an incubator. 

After that a single colony from the agar plate was picked up using an autoclaved 

toothpick and introduced to a mixture of LB broth (5 mL) and ampicillin (100 mg/ 
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ml, 5 µL) in a 14 mL BD Falcon polypropylene round-bottom tube and placed in a 

shaker for incubation for 16 hours (37 oC, 250 rpm) overnight.  

 

Protein expression 

First, one overnight culture was added to each shaker flask with 490 mL of 

autoclaved induction media (10.0 g of bacto-tryptone, 5.0 g of yeast extract, 2.34 g of 

NaCl, 30 mL of 6XM9 salt, 0.333 mL of 0.3 M ZnSO4 diluted to 490 mL), ampicillin 

(100 mg/ mL, 0.5 mL) and 20% filter-sterilized glucose (10.0 mL). Then shaker 

flasks were placed in the shaker (37 oC, 250 rpm) and allowed to grow until OD600~ 

1.0. Once the OD600 value reached that number protein expression was induced by 

adding ZnSO4 (0.3 M, 0.75 mL) and IPTG (100 mM, 1.25 mL) and shaking was 

continued for another 6 hours. After that inhibitors PMSF (1 mg/ mL, 2.0 mL) and 

TAME (1 mg/ mL, 1 mL) were added and cells were pelleted by centrifuging at 

12000 rpm for 45 minutes at 4 oC. Next the cell pellet from a 1 L culture was re-

suspended in 200 mL of lysis buffer with dithiothreitol (50.0 mL of 1M tris-sulfate, 

50.0 mL of 1 M NaCl, 40.0 mL of 0.25 M EDTA, 0.66 mL of 0.3 M ZnSO4, 1.0 mL 

of 10 mg/ mL PMSF, 1.0 mL of 1 mg/ mL TAME and 0.1542 g of dithiothreitol 

diluted to 1 L, pH = 8.0), lysozyme was added (1 mg/ mL of buffer), and the mixture 

was placed inside the shaker for 1 hour (37 oC, 250 rpm).  After that the cell-buffer 

mixture was centrifuged (5000 rpm, 75 minutes, 4 oC), the supernatant was collected, 

10% streptomycin sulfate (1/10 volume of the supernatant) was added and the 

solution was stirred at 4 oC for 15 minutes. Next the supernatant was centrifuged at 

5000 rpm for 60 minutes at 4 oC, and the clear supernatant containing the crude 
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hCAII[Zn] was collected without any cell materials which contains the crude 

hCAII[Zn]. Then the supernatant was transferred to centrifugal dialysis tubes 

(MWCO 10 kDa) and centrifuged with tris-sulfate buffer (pH = 8.0, 10 mM) for five 

times each for 50 minutes.  

 

Protein purification 

First, DEAE-sephacel gel (30.0 mL per 1 L culture) was equilibrated with 2 

column volumes of 1 M tris-sulfate (pH = 8.0, 60 mL) followed by 5 column volumes 

of 10 mM tris-sulfate (pH = 8.0, 150 mL). Then the gel was poured in to an flask with 

supernatant collected at the end of the protein expression (crude hCAII[Zn]) and 

equilibrated at 4 oC for 30 minutes. Next, mixture was transferred into a fritted filter 

funnel and washed with 1 column volume of 10 mM Tris-sulfate (pH = 8.0, 30 mL) 

and 1 column volume of 20 mM tris-sulfate (pH = 8.0, 30 mL) and fractions were 

collected into centrifuge tubes containing purified hCAII[Zn]. This procedure 

produces ~ 50-240 mg of hCAII[Zn]. SDS-PAGE technique was used to determine 

the purity of the hCAII[Zn] and a clear band was observed at ~29 kDa with no other 

major bands. 

 

Preparation of apo-human carbonic anhydrase 

A solution of purified hCAII[Zn] solution was transferred to dialysis tubes 

(MWCO 10 kDa) and centrifuged with BES buffer five times for 30 minutes (50 mM, 

pH = 7.2) and 2,6-pyridinedicarboxylate solution (250 mM in 50 mM phosphate 

buffer) was added and let stand for overnight. Then the enzyme solution with PDCA 
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was transferred to dialysis tubes again and centrifuged with BES to remove the entire 

chelating agent added (until a constant A280 value is given from the enzyme solution) 

which produce the human carbonic anhydrase apo-enzyme.   

 

Preparation of chemically competent BL-21 cells for transformation 

A frozen glycerol stock of BL-21 cells was streaked onto a LB plate without 

ampicillin and grown overnight at 37 oC in the incubator for 16 hours. Then, a single 

colony was selected and used to inoculate a 10 mL starter culture (LB broth, no 

ampicillin) that was grown for 16 hours in a shaker (37 oC, 250 rpm). And also LB 

broth (1 L), 100 mM MgCl2 (500 mL), 100 mM CaCl2 (500 mL), CaCl2/glycerol 

solution (85/15 v/v, 100 mL), four nalgene bottles with caps, microcentrifuge tubes 

and two shaker flasks were autoclaved and all the solutions were chilled overnight at 

4 oC.  Next, LB-broth in shaker flasks were inoculated with 10 mL starter culture and 

grown in the shaker at 37 oC until OD600~ 0.35-0.45. Once the OD600 reached that 

value, the shaker flasks were placed on ice immediately and chilled for 30 minutes 

swirling occasionally to provide even cooling and nalgene bottles were started to cool 

at the same time. The culture was split in between four nalgene bottles, centrifuged at 

4000 rpm for 15 minutes at 4 oC in a pre-chilled rotor.  After that the supernatant was 

decanted and each cell pellet was re-suspended in ice cold MgCl2. (100 mM, 100 

mL). Cell suspensions were combined into two nalgene tubes and centrifuged at 3000 

rpm for 15 minutes at 4 oC. Next, supernatant was decanted and each cell pellet was 

re-suspended in ice cold CaCl2. (100 mM, 100 mL). Cell suspensions were combined 

to one nalgene bottle, incubated on ice for 20 minutes and centrifuged at 3000 rpm for 
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15 minutes at 4 oC. Next the supernatant was decanted, the cell pellet was re-

suspended in CaCl2/ glycerol solution (85 mL), transferred to a 50 mL conical tube 

and centrifuged at 2100 rpm for 15 minutes at 4 oC. At the same time, autoclaved 

microcentrifuge tubes were placed on ice to chill. Next the supernatant was decanted 

and the cell pellet was re-suspended in CaCl2/ glycerol solution (2 mL). Finally these 

cells were transferred in to microcentrifuge tubes in 50 µL aliquots, flash froze with 

liquid nitrogen and stored at – 80 oC until use. 

 

Preparation of ampicillin-LB agar plates 

First 37 g of LB agar was dissolved in 1 L of water (LB- agar formulation: 10 g of 

casein peptone, 5.0 g yeast extract, 10.0 g of NaCl and 12.0 g of agar per liter). Then 

the pH of the solution was adjusted to 8. Next the solution was autoclaved at 121 oC 

for 20 minutes, cooled and ampicillin (100 mg/ mL, 1 mL) was added. Finally the 

agar solution was poured into petri dishes, allowed to solidify. 

 

2) Generation of manganese-substituted human carbonic anhydrase and epoxidation of 

4-chlorostyrene 

First, the manganese-substituted human carbonic anhydrase was generated by pre-

complexing Mn2+
(aq) and apo-enzyme in a 4-dram closed glass vial prior to the 

reaction by adding MnCl2(aq) (2 mM) and apo-enzyme in BES buffer (50 mM, pH = 

7.2). The mixture was stirred at room temperature for 15 minutes. Then, 4-

chlorostyrene (200 mM in acetone, 25 µL), KHCO3(aq) (1M) and H2O2(aq) (1M) were 

added in the mentioned order (total aqueous volume ~ 1.1 mL) and stirred for 16 
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hours. Next the reaction mixture was extracted with 1.5 mL of hexane (with 0.5 mM 

4-chloroanisole as the internal standard), and the reaction was analyzed by HPLC 

(chiral OJH column, 99.5:0.5 Hexane: i-Propanol) for analysis.  Retention times are 

11 minutes (major enantiomer) and 12 minutes (minor enantiomer) 
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CHAPTER 4 

CONCLUSION 

Artificial metalloenzymes are a promising class of hybrid catalysts for selective 

organic transformations. A new artificial metalloenzyme was generated to achieve 

thermostability and to improve the catalytic activity for the epoxidation of olefins. Site-

directed mutagenesis and polymerase chain reaction were used to introduce six mutations 

sequentially to defined positions of the wild-type enzyme in order to generate the 

thermostable mutant. The mutant hCAII[Zn] showed an improved stability at elevated 

temperatures compared to the wild-type of hCAII[Zn] as determined by an esterase activity 

assay. 

A dative anchoring strategy was used to generate manganese-substituted human 

carbonic anhydrase from the wild-type enzyme and the thermostable mutant, and both of 

these artificial metalloenzymes demonstrate catalytic activity for the epoxidation of 4-

chlorostyrene.  Both the wild-type and thermostable hCAII[Mn] showed catalytic activity for 

epoxidation of 4-chlorostyrene at low temperatures and conditions were finely optimized to 

improve the yields of this reaction. The thermostable mutant hCAII[Mn] did not have 

increased oxidative stability as expected and undergoes oxidative degradation similar to the 

wild-type hCAII[Mn], which limits further improvement of yield and enantioselectivity of 

this reaction. 

One possible approach to improve the catalytic activity of hCAII[Mn] would be the 

use directed evolution to improve the activity by site-saturation mutagenesis of the wild-type 

enzyme. This approach would generate a library of mutants to screen for improved activity 

and/ or selectivity of the enantioselective epoxidation of olefins. Another approach would be 
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the evaluation of activity of these catalysts for the epoxidation of olefins in the presence of 

different oxidants. 
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